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INTRODUCTION

/
!

“Conventionally; program effectiveness has been judged by comparing f

the average levels of achievement of two or more groups (e.q., hypothesf§//
testing). The underlying assemption Bf this approaCh\is that if a par-
ticular program is superiorlto another in its effectiveness, then students‘
in the superior preéram should score higher thaﬁ students who are not in
the program. However,lthere are seund reasons why such an aséumption is
inappropriate for programs whose intended outeomes are‘either comb]ete
mastery or some minimal level:of competency (i.e., resuf%s ineerpreted
_againsf a criterion). If two programs are compared and both fail

to produce mastery or student achievement 2t the intended level, then

both programs are ineffecfive, and it matters relatively little whethee
students in one program outperform those in another, Then, uniike pro-
gram evaluation in which success is determined solely by 1eve1 qf'achieve-
ment using,,fer instance, group means, it can be argued that the affective-
ness of a mastery program should be judged by the number of students who
obtain passing scores on a masfepy measure. Given the above rationa]e;
there exiets a need for a]ternative‘sgatistieai methods for evaluating
program effects in terms of mastery. A nqmber;of statistical. limitations
also support.this need: 1 ' |

In mastery testing, the metrics are not necessariily continuous. The




*.. outcomes of a mastery test can be considered not as a "score," but rather

as a "sign" (Harris, 1974). Tﬁat is, all individuals classified as masters

receive a sfgn, e.g., (+) and all individuals c]qssified as non-masters

receive a different sign, e.g., (-), no matter what score they receive on

the test. Another problem 1ies in the distribution of'ma§teryﬁ While

‘the structure of mental abilities has been studied extensiVe]y, the struc-

ture of proficiencies is relatively unknown. It has been estéb]ished, how-

ever, that in measuring mastery the tester is not dealing with thé‘naturaf\w
organization of the mind (Cronbach, 1960). How difficult an item is\fqr »
a given 1ﬁd§viddalbis strictly a function of'his_éxperience. fB]oom (1968)‘
has suggeﬁted that training affects the contours of distributions of tfue
scores. It may be reasonable to assume that before trgining occurs, the
aptitude to learn a skill is normally distributed and the amount of knowl-
edge possessed by most individuals with respect to that specific skill is
very little. Mastery learning theory asserts that ﬁnder appropriate in-
structienal conditions, virtually all students can master most of whe®
they are taught (Block & Buros, 1976), and that student test scores vi):
'c]us;@g‘around the higher end of the continuum. Therefore, the distribution
\xﬁ\EEiE/s€Gres-mdy be negatively skewed. | |

When testing for significance of group differences, if the underlying

distributions from the two poéu]afioné are not 6f the same shape but are
symmetrical, we encounter 1ittle difficulty. 'If tg?zhgiffer in skewness,
'however, the distribution of obtained t's also has a téﬁdency to be

skewed, with a greater percentage of obtained t's falling outside of one

1imit than the other. This-tends to bias probabilitysstatements (Bon au,
.. )




1960). Glass, Peckham and Sanders (1972) also report that skewed popula-
tions can seriously affect the level of significance and power of direc-
tional, or one-~tailed, tests.
| Another problem arises whep we examine the basic assumptions required
for hypothesis testing. For instance, the assumpt1on of homogeneity of
i)mr1ance required by ANOVA wou]d be difficult to meet if various treatment
groups d1ffer in the amount of 1earn1ng each has acquired. As was pre-
viously stated, before 1earn1ng‘takes place, the subject matter of most
studerts' knowledge clusters around the nonmastery point. After'1earn-
ing has taken place, most individuals will have mastereq the skill, and
their abilities wi]] éluster around the high end of the continuum of
scores. In eithar caze. ’he variance is smal] It is at the halfway
point -7 the traun1ng progxam that 1rd1v1duals' scores tend to spreadout
(Boreau, 19f6). Violating the ¢..sumption of homogeneity of variance has
very slight effect ona (type I error), if the sample.sizes are equazi, al-
though actual salways seems to be slightly increased over the nominal o.
With unequal sample size, however, o may be seriously affecpgd. As reborted
in Glass (1973), Scheffé fouhd, for exarnie, in a case where the nominal "

2

is .05, ny, = 1§’and n, = 5 and alz = .2a2 , the actual probability of ob-

taining a signi;;fant t-ratig when the null hypothesis is true is .178.
Thus3 one is nearly fhree and one-half times more likely te commit a type I
error than is supposed. ' '

The effects of nonnormality and heterogeneous variance were studieda
by Norton (1953) and Boneau (1960). " Both studies used only cases with equal
sample size. The results, as summarized by Glass, et al., suggest that

~ nonnormality and heterogeneous variance appear to combine additively to

affect either level of siynificance or power.

\)‘ ' . '. oy
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This paper presenfs an alternative method for dealing with the above
e
limitations. The proposed method assumes a mastery assessment model with

—~—

the fo]]}wing characteristics describéd in terms of the construction and
scoring of mastery tests as well as the organizationh 2nd reporting of
group testing results: ' .
}) For program evaluation, the skill that is being tested must be
explicitly defingd in ferms of a performance criterion. {ests designed
to assess mastery of a single skill consist of a collection of test items
which are highly homogeneoys_in content and form so that each item response
provides an unbiased gstimate of the examinee's mastery status with‘réspect
to that skill. '
2) When multiple skills are tested, the knowledge possessed by an
indiviﬁua] missing an jtam testing skill A is not comparable to that of
an individual missing an item ;esting skill B. Thus, items constructed
to test each skill 5hou1d be considered as constituting a unique test.
The result of these item groups shou]d‘be reported in a manner such‘that
the mastery standing on gach skill can be clearly determined. Results
from a multiskill measure should be reported in the form of a vector
having as its elements the mastery decisions represenfing each ski]l‘tested.
3) Regardless of the number of oqtcéme categories (m > 2) (e.g.,
master/nonmaster or cther combinations), each testee can be assigned,
on the basig of his/her score, :to 6ne-of}severa1 mutu&]]y exclusive cate-
gories with respect to a single skill. On a test of mﬁ]@jple (n 3_2) ob-
A‘jectives, an ind1vidqa1 wii] then be assigned to one of thé m" possible
categories, For éxéﬁp]e, on a test of two skills, a fes;ee can be assigned

to one of two categories with respect to each skill (m = 2); therefore,

-~
o



there are 4 (22) possib]é categories to which an individual can belong:
He can master the first skill but fail the second skill; he can master .
the second ski]l but fail the first skill; he can master both skills; A
he can fail both skills. : s
The following is an example of how test results are reported accord-

o

ing to the model: A
Suppose a reading program on literal comprehension is designed to
,achieve the following objectives:
a. The learner will identify, in a reading se1ec;ion, the explicitly-
stated main idea.
b.  The learner will write a sﬁmmary of a passage he has just\(gad.
c. Given a reading selection in which a question is poged and the
answer explicitly stated, the learner w111 identify the answer
to tﬁe question. _
d. After reading a given selection, the learner will identify the
éorrect seqhence of its main events or’concepts. .
Test items reflecting these objectives are then chosen to éssess the
success ‘or failure of the reading program. Ten items are randomly selected
for assessing each objective. Mastery is defined as responding correctly
to 8 out of 10 items or making 20%,‘or less, incgg:ect.responses. Thus, if
Student A correctly answers 7 items for objective a, 8 for b, 4 for c,
‘and 10 for d, she will be assigned to the mastery group on objectives b
and d. The numeral 0 is assigned to desighate nohmastery and 1.for mastery.

Student™ A's responses, therefore, may be summarized as a vector with entries
b

(0,1,0,1). Student B answers 6, 6, 10, and 7 items correctly on objectives

~

a’'to d, and hishresponse pattern, using mastery scoring, will appear as




: . ) &
(0,0,1,0). By examining each‘jndividual's response. vector, it is possible

to ascertain which skills haves and have not, been mastered. This type of
data provides specific information on each individual's mastery status for

¢

each objective and thereby,yields a more complete-diagnosis than does a
single numeral score. It is assumed here, that mastery’]e&e]s are not ar-
bit%ary and that two‘peop1e with the same abi]ify will attain the Same
mastery score.

‘The model can -also be applied to group data. 'For examp]e,-to compare
fﬁe effectiveness of two teaching methods (A and B) in achieving student
vmastefy of the previously listed objectives, students are_randomiy assigned
to two instructional groups. One group uses method A (Group A) and the -
other group uses method B (Groﬁp B}. Results obtained from measurements
that are designed to test mastery of these objectives can be arranged as
shown in Table 1. o .~. | )

In Group A bn]yf62 students mas;er all four obﬁectives, whereas in
Group 83, 122 sfudents master the four objectives. Three hundred and fiye
students in éroup A and 217 in Gfpup B master, objective a but do not master
objectives b, ¢, and d. | |

The data obtained from the use of this model fequires a stat{stiéal
approach different from the conventional approach used with continuous
data. ﬂwith continuou; dafa, the égdependént variables in 1eést-square
aﬁa]yses mayvbe either catggorica] or confinuous or both. When the response
variables (aependént variab]es) are qualitative jcategorica]), such as the
data‘preéénted 1n,Tab1e Ty h;wever3 the statistical analyses change
fundamenta]iy, becdﬁse~the random'Qariable in the statfstica1 medel is

. . P
disc. ete and must be described by a'discrete-probabi1i§y distribution.

Ce -



TABLE 1

Sﬁﬁmgry of Responses of
Two Method Groups on Four Objectives

Response Vectors Number of persons with
Objectives : given mastery pattern

a b o d Group A Group B

. (Control) (Experimental)

1 1 1 1 62 122

1 1 1 0 70 68

1 1 0 1 31 33

1 1 0 0 41 25

1 0 1 1 283 329

1 0 1 0 -4 253 247,

i 0 0 1 200 172

1 0 0 0 ' } 305 217

0 1 1 1 (/ 14 20

0 1 1 0 /.. , 11 10

0 1 0 1 g 11 1

0o a, o0 0 . 14 : 9

0 0 1 1 31 ~ 56

0 0 0 46 55

0 0 0 1 37 ’ 64

0 0 0 0 82 53




Although in large samples these distributions can be approximated by;the
continuous univariate and multivariate normal distribution, the approxi-
mations are often inaccurate in practical-sized samples and cannot be
recommended in general.

The following section discusses an alternative statistical approach--
one which is appropriate for the analysis of the type of complex contin-

gency taﬁ]e-data presented in Table 1.

@ THE LOG-LINEAR MODEL

The study of complex contingency tables stems from the eaf]y work
of Bartlett (19395'on contingency table interaction. His work was followed
by that of Fisher (1943) and Norton (1945). More recently, this area of
inquiry has been extended by such scholars as Plackett (1962), Good (1963),
Goodman (1970, 1973), and Bock (1969, 1973). ' ’

Bock and Goodﬁan were concerned with the development of genéra] asymp-
t&tic procedures for testing higher ‘order interactions in complex contin-
gency tables. The methods used by-these'two researchers apply generally
in the analysis of multifactor, multiresponse data when the response is
qualitative buf not ranked, The so]ﬁtions offered by both yfe}d similar
results (Goodman, 19735? The procedure for establishing the .model matrix,
using -Bock's method, is straightforward and can easily be generalized to
various e*berimenta] deéigns. Bock's solution, obtained through his method
of estimation; in many respecfs parallels the general linear model approach
to the univariate and multivariate analysis of variance applied to contin-
uous data (Graybill, 1961).

The following is a description of Bock's Log-Linear Model applied to

the analysis of multivariate quantitative data. In this description, if

)

17>
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3, as 1n the case of a singie skill test, the category froguencies
thus wvenerated will be called single-response data. T1f each subject makes
a number of responses, and each response is assigned to one of several
mutually exclusive categories as in the case of multiple skills testing,
the resulting frequencies will be called multiple response data.

The Two-Category (Single-Response) Model

The problem of characterizing the relationship between a stryctured
independent variable and a qualitative response variable is re]atéve1y
simple when there are two response categories, e.g., masters and nonmasters.
Data in this form are referred to as dichotomous or binary.

Let us suppose that the experimenter establishes experimental condi-
tions in which the responses of the subjects are observed. These conditions
differ in physicaliy identifiable or measurable ways which are hypothesized
to influence the probability of response. Let Nj subjects be observéd
under experimental condition j. The subjects are then scored dichotomousiy
according to the presence or absence of some response, in this instance
“mastery" or "normastery." Let the number of subjects under experimental
condition j (j = 1,2,...n) who show the response be ri and the number of
subjects who fail to show the response be er' Let the corresponding

response proportions be PJ.1 and sz; then P.. + sz = 1. The probability

Ji
of cbeerving the frequencies " and rjp among Nj randomly-selected subjects

is given by the binomial law:



0

ongtdertag the »road § odata separateis, t can »2 showrn that the

1

best urbiased estimates of F and F., are respectively:

il je

(2) Pj1 = rj] / Nj )

"o T2 1N

But if there is a functional relationship between Pj1 and an indepen-
dent variabie, ﬁj’ it may be possible to estimate the population proportions
more accurately by estimating the parameters of this relationship rather
than by using (2). The experimenter's problem is, then, to predict these
vroportions by estimating response probabilities PJ.1 and sz, expressed as
a function of the independent variables which determine the experimental
cpnditions.

To avoid computational difficulties arising from inadmissible esti-
mates, and in the hope of simplifying the relationship between the response
probabilities and the independent variables, Togistic transformation of the
probabilities is typically performed. In the binomial case, the logistic

response iaw is defined by:

eZ.
(3) Py = S -
J 1 + eLj

or log (pj] / sz) =7

The quantity Zj is called a binomial 1ogit. Where thére is a single

guantitative 1ﬁdependent variable, a polynomial model may be suitable:



or, in matrix notation:

Z = X a
(5) nx1 nxr rxl

Model (5) parallels the univariate regression model. In that vector Z
corresponds to the expected values of the observations, the matrix X
ccontains the known value of the independent variable, and g8 is the vector of

coefficients to be estimated.

The Multiple Response Model

In fhe mu1tip1e response situation, let the number of categories in
the response classification m be equal to or greater than 2 (m > 2). Let
the number of subjects under experimenta}«condition j(ij=1,2,...n) who
fall in category h of the classification be rjh’ where ?rjh = Nj. Assume
random sampling of subjects, so that the probability of the response fre-

quencies rjh is given by the product multinomial:

n N.! rjz rjm
(6) n! ' 1 ' Po " s . P-
i rj]. rj2' .. rjm' je Jjm

To express the response probabilities as functions of the experimental
variables, let us introduce the myitivariate logits of group j as
(=/ - o . °
Z; \zj1, Zjr +eo ij) and generalize the logistic response law as
follows:



j2
P.. = e 9¢/D.
JZe/DJ
2.

= o Jm .

ij e /Dj ;
2. Z. z.

where Dj = e ) + e J2 + ... +edM

In estab11sh1ng a linear model connecting the 1og1ts with the 1ndepen-
ient variab]es we must provide for the possibility that structure of the
-ategories is implied in the response classification. A mode1 for the
logits sufficiently general to include both a structured response classifi-

cation and multiple experimental variables is as follows:

Z = X . 8 . A
(8) nxm nxg gxt txm

where Z is the logistic transformation of the response proportions.

The rows of Z are z; (i =1,2,...n).

The matrix X is a matrix of the known values of q independent variables
issociated with each of the..subject groups. In the present model, it
iccounts for variation in the response probabi11t{es over-the.experimenta1
onditions. Given the data presented in Table 1, if the respoase probabil-
ities of the two instructional groups differ, the basis for this part of

-he model (called the physiéa1 part) should be rank 2. For example:




"
ot

where column 1 accounts for the grand mean and column 2 accounts for

the difference between the two experimental qroups.

If the groups do not differ, a rank 1 model comprising only the first -
column of this matrix will suffice. _

8 contains unknown pafameters of the effect, and the role of matrix A
in the model is'to account for vafiation of the response probabilities
across categories (m) of the response classification. The categories of
the response classification in the present exaﬁb]e’are represented by the
different response vectors shown in Table 1. Thus there are 16 categories
in the "response" part of the model. In general, for k dichotomized
responses, there are %f categories in the résnohse part of the méde1.

The rank of the ?espbnse_part of the model depends on the number of
categories and ways of classification in thé contingency table, and on how
the Eespogse probabilities are assumed to be aeteﬁﬁjned. In this instance,
,the a1terpa£1ves for establishing the réspdhse matrfx_are: a rank 4 main
category mb&el, a rank 10 first-order interaction Wodel, or a rank 4
second-order 1ntéractidn model. The basis consists of as many rows from
tﬁé conventionél matrix of single degree of freedom contrasts for a 2k
factorial design excluding tﬁe vector corresponding to the gfand mean.
-The grand mean vector is excluded because the response probabil{ties are
invariant under.chahge of location of the logits. A main categdry mode1

-1s given.

.‘E

P-A
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T -1 1 -1 1 -1 1 -1 1 -1 T &-’I L

In the‘analysis of the data from Table 1, a full rank model would con-
sist of a rank 2 physical part and rank 15 response paft, Using the full
rank model, the estimated reéponse probabilities would be eﬁua] to the
observed pfobabi]ities, and no gain in precision wdb]d resqlt'from‘fitting
the model. | |

If .the subject groups have a crossed or nested structure, X{will be
the modg]‘matrix for the design and will, in general,be ¢° deficfent rank.
Suppose the rank of X is r < gq. Thén it will be necessary tox(eparameterize

the model by setting: )

‘X=K._L,
T onxr.  rxg

the rows of L are coefficients of linearly estimatab1e‘functibns of the -
s

parameters in the cq]umhs of 8. That is, L must be of rank r and must

satisfy the usual condition for linear estimabiljity:
G000

) X - !
rank [...] = rank [X] = rank [L] = r
L - .

Like X, matrix A will also frequently be of less than'full rank.

.

Suppose rank A = s < t, then it will also be neceséary to reparameterize

the mode1|for factoring A as:

b
(@)



S . 7T

A= txs  sxm

where rank (S) = s and thadcolumns of S are linearly dependent on

those of A.

After these reparameterizations, (8) becomes:

j

K(LBS)T

—~
o
—
~N
i

K .. r . T
nxr rxs SXm

il

The matrix K is the "pre—fa;tor," I, the parameter, and T the "post-
factor," afterﬂRoy'g (1957) terminology.

Using the multinomial probability function (6), estimdtes of the

model (9), parameters can be obtained, given that the model is identified,

through the use of the method of maximum likelihood. This method gives

asymbtotica]]y best estimates in that they are asymptotica]]y norma]]y

d1stributed consistent, and, in general,-have asymptot1ca11y more effi=-.

cient stardard errors than other classes of estimators (Rao, 1965)

A

- Ve .
Let us define, in matrix form, the vectors of response frequencies and -

é$sponse probabilities for experimental condition j to be:

R AR Y P
ri2 " Py2

ry = ' ~and Pj =
im0 [Py

Assuming random ass1gnment of samples of subjects to the n groups,

the Tikelihood equations- may be expressed as:

-

15
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rsx]
where x denotes the Kronecker prod@ct and Eﬂ is the j-th row of K
written as a co1uﬁE; Suécessive(elements in this'expression represent
derivatives taken with respect to kh? with the second sdbscribt

varying first,

Let us define the mxm matrix:

Py (1 - Pyp) - P3Py “ Pi1%in ‘
RRPEY Piall = Pypd - "5
“PimP 51 “Pimfj2 _ Pintt = Pin)

] J

The rs x rs matrix of second derivatives may then be expressed as:

n
- = « 3N, TW.T" Kz
(11)_ H(r) LNjTNJ X Ej_j

4

To obtain the maximum 1ikelihood estimates, the Newton-Raphson
itérative procedure 15 Earried out as follows: Starting at initial estimates

for I, called fé, such that: o . v o .

=r. +6t’

(12) Typy

where the t subscript denotes the iterative step, and

RS PPN
8, = H (rt)G(rt) s

XY
7
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where H'](ff) is the negative of the inverse of the matrix of second
derivatives evaluated at ;t' The process may be repeated=until the

_corrections (§) vanish.

The theory of maximum likelihood estimation establishes that such
estimates are consistent, i.e., they converge to population values as the
sample size becomes indefinitely large; and their joint distribution is
approximated by the multivariate normal distribution with mean equal to the
population value, and variance-covariance matrix equal to the negative |
inverse of the matrix of second derivatives oy the 1ikelihood function:
(13) V(f) = &' (r)

' Large samb]e standard errors for the estimated parameters of the
Togistic model are obtained by extracting the diagonal of the matrix of

second derivatives in the final iteratibn of the Newton-Raphson solution.

Tests of Goodness-of-Fit

The goodness-of-fit of the model to the data, at the final value$ of
the-perameters, can be tested by the chi-square approximation for the

likelihébd ratio statistics:

" m \

The P's are Ehe expected_resbonse probabilities computed from the maxfmum
Tikelihood estimates of the parameters in the hypothesized model.  The
number of degrees of ffeedom for this chifsquare‘is the difference between
the number of parameters fitted when the observed proportions estimate

directly the population proportions and the number fitted in the model:

g
| Y
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d.f. = n(m -1) - rs.

In moderate size samples, the Pearsonian chi-square,

2 2
nm (r., - NP, )
(15) %2 = 1z —iK ik
P ik . Nij

and the Tikelihood ratio chi-squafe usually differ on]y slightly. However,
Fisher suggests the L. R. chi-square is more appropriate whenvsome'of the
expected values are sméi].

” .In the next section, the fictitious data.presented in Table 1 will be
analyzed using the model, as will a set of data taken from an actual eval-

uation study.

_AP?LICATION OF THE MODEL
Example 1 ’

" The set of datq'which compr1ses Table 1 was orfgina11y used by Solomon
and has béén anajyzed by both Goodman (1973) and Bock (1969). Use of this
daté a11ows for a more éomplete 1hve$tiga£ion of the 1hportant;attr1butes
of the proposed method of énalysis than would be possible using empirical
data alone. \ ) ’

| In the previous discussion, a hypdthetica].reading program was des-
cribed. Its objectives fell into four areas: ‘
" a. ﬁIdentifying main ideas '
b. Nrjtfng §ummar1es
c. Selecting correct answers to questions §pgut matgrial read
d. }dentifying"correct sequences of events |

Let us'suppose the teachers reported that, in their jqument,the‘program was

effective in teaching students to master the se1ecfed skills, thatnit was

e .
J)’\’

‘o % ’ ' ‘ ~~ iy
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decided that a test should be constructed to aséess student mastery on
these skills, that such a test was constructed and given. We can see that
student responses to such a test could be used to further improve the test.
For example, to sfudy how well the instrument is able to differentiate
masters and nonmasters, fhe test could be administered to a random sample
of students who wént through the program and a random sample of students
who did not.

'Resu1ts from tﬁis hypothetical test are presented in Table 1.
Resoonse vector (1 1 1 1) indicates the number of~students who mastered
egch of the four objectives: 62 sfudents in the control group mastered
these 6bjectives, and 122 of}the experimental. students also achieved
mastery. Response véctor (0 b 0 O)uindjcates'the number of students who
were classified as “nonmasters" on any 6f tHévfpur objectives.
) Several a]ternatives must be consjdéred in setting up the model for
the ana]ysis.- If the response probabilities of tHe}two groups differ, the

basis for the physical part’of the model should be rank 2. For eiémp1é:

1 1
1 -] .

There are three alternatives for the response paft»of the model.
These alternatives are a rank 4 main-category h&ﬂel, a rank 10 first-order \
interaction model, or a rank 14 sgcond-order interaction model. Tﬁe
possible bases for the response part of the model are given bygthe
approbriate sing]é dedree of fregdomucontrasté for.24 factorial design;

For the data phat 1s‘presented in Table 1,'the goodness-of-fit chi-

4

square for several alternative models are shown in Table 2.

£y ~
L

-«



TABLE 2

- Goodness-of-Fit Tests
- for Variqus Models

Rank of Rank of

physical response v Degrees of
part part L.R. chi-square freedom Probability
1 4 188.3615 26. <.0005°
2. 4 130.4839 | 22 <.0005
1 10 74.4613 20 ~ <.0005
2 10 11.5628 10 . 40<p<. 30

2 - 11.5628). The

The rank 2, rank 10 model appears to fit the data well (x
estimated parameters using this model are shown 1n'Teb1e 3. (pe Group A +
Group B effect reflects the general response probabiTity of each subtest‘
for the corresponding issue. Subtest a has high response proeability
(8=.75) and subtest b ( =-,76) has Tow probability, aﬁd thus the response
patterns beginning with 1-0 (mastery of objective a, nonmastery of objec-. -
tive b) are especially frequent. | These estimated parameters can Be'used

in much the same way as item d1ff1cult1es of classical ‘test theory In
genera], many students mastered (obJective a) main idea and a few mastered

(objective b) wr1t1ng summaries. Patterns of responses with mastery of

obJective ¢ also tend. to be more probab]e and this tendency. is increased

:by the 1nteractive effect of a Jo1nt occurrence of mastery of objective ¢

-~

w1th mastery of objective a or b.

v i ) o
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TABLE 3

Estimated Parameters and Standard Errors:
for Rank 2, Rank 10 Model

.Physical effect

N A+ B o A-B
A Estimated Standard Estimated Standard
~ Response Effect Parameter Error Paraméter Error
~ a .7542 (.03133) .0433 (.06266)
b -.7636 (.03195) .0233 (.06390)
c - .1473 5.02984; -.1949 2.05967g
. d -.0120 .02913 -.2825 .05827
axb -.0316" (.03116) -.1033 (.06232)
‘axc .1240 (.02468) -.0061 (.04936)
axd ..0289 5.02476; .0907 §.04952;
bxc. .1515 .12550 - =-.0427 .05101 .
b x d .0500 (.02427) -.0839 (.04853)
cxd .1053 (.01894) .0222 (.03790)

, The estimated contrasts between Group A and Group B indicate that the
difference between groups is almos% éntire]y due to differences in their
response probabilities or individual subtests.(specffica]]y_c and d). The
very small values of Fhe interactiop contrasts as compared to their.
standard errors sqgges£ 11tt1e difference in pairwise association between
items frowm one gfoup to the otfher.: ﬂoticg that the two groups are most '
diffgrentiated on is;ues ¢ and d. Both the experimental and control grbupS{
have mastered objective a (8 = .7542 corresponds to an estimated'brobaﬁility
of correct résponse)of 0.82). There is no differencé—between the level of
mastery of the ekperimenté] and coﬁtro] grdups on(ébjectivé.a'(e = .0433y
which is not étatisticaily different from@zeroi.w This finding also illus-
trates the fact that measurements whjchvﬁave mgdium response prabability
are better-discriminators than meé;ureménfs Tike subtésts a and b, which
‘_have-extreme (Tow or hjgh) response probab%]ify.

oy
H\)



Table 4 gives the estimated cell frequencies of the rank 2, rank 10
model, which can also be used to check the gocdness-of-fit of the model.
, : (ABLE 4

Response of Students in Member
and Nenmember Groups

Objective
responses Observed frequencies Expected frequencies
abcd . Control Experimental Control Experimental
1 62 - 122 68.6 120.9
1110 70 , 68 62.6 . . 66.5
1101 31. 33 29.7 33.7
1100 41 25 ‘ 43.2 27.0
1011 " 283 329 276.3 322.4
1010 ' 253 247 260.6 256.2
1001 200 172 201.4 179.1
1000 305 217 302.7 207.4
011 14 20 11.6 "21.5
0110 11 10 14.3 11.0
o101 11 - 1 8.2 10.0
0100 14 9 16.0 7.5
0011 . 3 56 33.5 62.2
0010 46 55 42.6 46.2
0601 37 64 - 39.7 57.4
0000 | 82 - 53 - . 80.2 62.2 -
Total 1491 1491 1491.2 1491.2
Example 2 : »

The fol]owing example illustrates the use of mastery measurés in
evaluating educétiona] programs wifh pre- and post-testing. This ekamp]e
is based on fhe 10th-grgdé results of the Los Ange]éé Unif%ed School

District's ESEA'T1t1e 111 Ecology Program.

fy.» ~
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The purpose of the program was to develop 2 package of XEarnihg acti-
vities that weuld effectively teach students to master se]ected-ecpiogica11y
related facts and concepts. Students from the 10th-grade biojogyrciasseé
in the district were randomly selected to participate in the prdgram. One
half of these students were randomly assigned to the experiﬁenta1*grcup
and were given instructions based on the newly developed JOth-grdde'Ecology
Learning Activity Module, while the remqining half were aséigned to the
control group and ccntinued in their regular programs. To ascertain the
7 relative merits of the new module compared to the regular prograh, a test
consisting of several subtests was constructed. Each subtest contained
jtems measuring a specific objective and was administered to bpth groups
of students prior to, and immediately following, the ten-week instructional

period.

In the program, mastery waé defined as beihg ab]e.to answer at least
75% of the items on a subtest correctly.

The frequency distribution of attainment of mastery on two subtests
is presented in Table 5. The concepts (designated as M and N) measured
by these two subtests are:

M: Man, living in different cultural settings throughout
history, has viewed his position ir nature in a variety
of ways. These range from living his role as a fragile
functional unit, to his believing he has the divine right
to develop, * possess, and to destroy.

N: Modern man's values about how the land should be used i
have led to Targe-scale exploitation and ruin of wiid
areas. Some of the ways man destroys land are by clear-
cutting, paving, strip-mining, and dam-building.

-



TABLE 5

Frequency Distribution of Attainment of Mastery
on Pre—ﬁ;nd Post-testing on Subtests M and N

Subtest M Subtest N

Pre Post  Pre Post Experimental Control
0 0 0 0 28 19
0 0 -0 1 9 8
0 0 1 0 8 10
0 0 1 1 7 12
0 1 4] 0 10 9
0 1 0 1 19 . 5
0 1 1 0 7 9
0 1 1 1 24 M
1 0 0 0 4 1
1 0 0 1 3 10
1 0 1 0 8 5
1 0 1 1 8 16
] 1 0 0 20 24
1 1 0 1 28 18
10 10 1 17
1 1 1 1 93 48

With two experimental conditions, the physical part of the model is set

to be: .y

1 1
X =
1 -1
where column 1 accounts for the grand mean and column 2 accounts for the
difference between the two experimental groups.

Each individual's mastery statu§/ijh«respect to responses M and N

can be classified into one of the f011owiﬁg four categories:




Subtest M Subtest N
Pre-testing Pre-testing
N - + - ) - +
~ “ Post- B a ¢ ) i
testing s b q + b d
P

a. Non-mastery on both pre- and post-testing.
b. Non-mastery on pre-testing and mastery on post-testing.

Mastery on pre-testing but nonmastery on post-testing.

(]

d. Mastéry on both testing occasions.

. With respect to the two skills, therefore, there are 16 (4 x 4)-
poss{b1e categories of résponSe classifications. Theée categories are
represented by the djfferent response vectors in Table 5.' The respohée
matrix resembles a conventional 4% factorial desiqn‘exc1uding the vector

corresponding to the'grand mean. A full rank model (rank 15) consists of

three degrees of freedom (4-1=3) for each for the two main caiegories, and

9 (3 x 3 =9) degrees of freedom for the first-order interaction. The
vector for. each single degree of freedom should be constructed according
to the hypotheses the experimentor wishes to test. For instance, suppose:

that the following vectors are chosen to form the basis. of thé response:

[ Y
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Column .
- 1 2 3 4 5 6 7 8 9101112131415 v
oy : | 1 Row

1 0-110-1,1"0-1 00 0-1 01 1
1 0-1-1-1 ¢°-1-1 0 0O O 1-1 0 2
1 0-1-1 1 0-110 000 1-1 0- 3
1 0-1 1T 01 101 00 O0-1 01 4
-1 101 ¢-1-1 011 0-1.00 0 5
-1 1 0-1-1 01 1 0-Y-1 00 0O 6
-110-1101-10-11000 0 7
A <1101 01-1 0-11 01000 8
=11 0 1 0-1-1 0 1-1 01 0 0 O 9
=11 0-1-1 01 1 01 1 000U O 10
; -1-10-1101-101-10000- 11
-1-1 01 01-1 0-1-1 0-1 0 0O 12
101 10-1101 0001 0-1 13
10 1-1-1 0-1-1 0 0 0 0-1-10 14
1 ¢ 1-11 0-1 7T 0O OO O-110 15
101 101 1T 0-1 000101 ] 16

The rows of the matrix correspond to the 16 categories of the response

classification, and each column corresponds t6 1 degree of freedom. The

first 3 columns accodnt for the response classific;tions on subtest M

alone. Columns 4 through 6 account for the response classifications on-

subtest N. Columns 7 through 15 are the interaction terms which, in the

logistic model, correspond to association between the interacting classi-

fication; estimates of these effects serve as measures of the directidn

and extent of association.

o

If a full rank model--rank 2 physical part and rank 15 response part--

is fitted, the estimated response probabilities would be equal to the-

% observed probabilities. Residual chi-squares can Be computed by fitting

a rank 1 response part rank 1 physical part model using column 1 of the

physical matrix (X) and column 1 of the response matrix. By adding

..columns .2,3,4,...,14 successively to the basis of the response matrix;

residual chi-squares can be obtained for models disregarding the difference
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in response patterns between the two experimental conditions. The differ-
ence due to sampling (experimenta] condition) can be taken into account

by adding column 2 of the sample matrix (X) to the model. Table 6 presents
the residual chi-squares for models of various ranks. TheAdifference A
between-the respective residuals then provides chiquuares corresponding'
to each cbmponent. ‘

In the response matrix column 1 tests the probability of change in .
mastery status between pre- and post-testing versus the probab111ty of no
change on M. Co]umn 4 tests the same hypothes1s w1th respect to ‘subtest N.
Columns 2 and 5 test the probability of positive change versus negative
change on M and N, respect1ve1y. Columns 3 and 6 test the probability

of pensistent nonmasters versus students who knew the skills from the
beginning. '
. . e
Since column 1 of the sample matrix is the grand mean, all mode]s with
1 degree of freedom in the sample matrix g1ve the general tendency of the
response pattern. A1l models with 2 degrees of freedom in the sample
matrix give the interaction of treatment group membership and response

pattern.

General Tendengx

In Table 6,the first 6 response components, with the exception of
component 5, are significant at the a = .05 level, and thus the following
conclusions can be drawn: '

1. With respect to skill M, disregarding the difference in instructional
group membership,

a. The component XZ of 209.03 indicates that there is a greater

tendency for students to remain in the same mastery status



TABLE 6

Test of Goodness-of-Fit
Ecology Program Tenth Grade Results

Ranks - Likelihood ratio Component
Sample Response residual chi-square df chi-square - df
-1 0 464.90 - 30 .
] 1 255.87 29 209.03* 1
1 2 . 250.55 - 28 5.32* 1
1 3 176.60 27 73.95%* 1
1 4 122.88 . 26 53.72%* 1
1 5 120.15 ° 25 2.73 1
1 6 94.14 24 26.071%* 1
1 7 88.64 23 . 5.50* 1
1 8 88.64 22 0.00
1 9 88.64 21 0.00
1 10 . 88.53 20 0.1
1 11 87.89 19 0.64
1 12 87.79 18 0.10 1
1 13 86.85 17 0.94 1
1 14 85.64 16 1.21 1
1 15 65.37 15 10.37** 1
2 . -2 0 430.38 30 _
2 1 254.82 28 175.56** 2
2 2 236:90 - 26 17 .92%* 2
2 3 161.20 24 75.70** 2
2 4 107.20 - 22 54.00** 2
2 5 102.11 20 5.09 2
2 -6 72.42 18 29.69** 2
2 -7 65.29 16 7.13* 2
2 8 65.13 = 14 0.16 2,
2 9 65.08 12 "~ 0.05 2
2 10 64.69 10 0.39 2
2 11 55.08 8 9.61** 2
2 12 54.93 6 0.15 2
2 13 7 54.10 4 0.83 2
2 14 52.91 ‘ 2 1.19 2
2 15 Null 0 52.91** 2

**significant at a = .01.

*significant at a = .05.

Dy .
o
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rather than to change (.70 vs. .30, see Table 7). The pre-test
margina]s indicate thét 63% (Table 7) of the students had already
mastered the material brior to instruction. A program that
results in a much higher probability may be wasteful, while

one that results in a lower probability may need strengthening.

TABLE 7
Contingency Table of Pre-test by Post test
(Skill M)
j -'
Pre-~testing
Nonmaster Master
: 101 65 166
post-  Master (.19)- ~(.12) (.31)
testing * 94 262 356
| Mas ter (.18) S (L81) | (.69)
195 327!
“ | < (.37) (.63)

The tendency Ofmpositive change is greater thaq negative change
&2 = 5.32). Assuming that an individual cannot unlearn a ski]]ﬂ
between pre- and post-testing,“the negativé change can be used

as an index for measurement error. The significant x2 thus
enables us to conclude that while it is more 11ke1y that students
will rema1n in ‘the same mastery status rather than change, the
probab111ty of a positive change is neverthe]ess greater than
error. s

The 1ikelihood of mastery on both testing occasions is greater

than for nonmastery on both occasions. Taking points a and b
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into account, it can be conc]ﬁded,that the material is too
easy for students at the 10th grade. level.
2. With respect to skill N, diéregarding the difference ip instruptiona1
group membership, |
) a. ‘The component X2 vé]ue of 73.95 indicates -that %here is a greater
tendency for students to remain in the same mastery status rather.
than to change (.66 vs. 36, see Table 8). This tendency aga1n

is due to the heavy concentrat1on of students in the master

master cell.

TABLE 8

Cont1ngency Tab]e of Pre-test by Post test
(Sk111 N)

Pre-testing
Nonmaster Master

. ~ Non- 125 78 203
~  Post- Master | (.24) (.15) (-.39)
testing ~ 100 219 319
Master (.19) (.42) (.61)

.225 297 ‘

(.43) (.57)

b. Although there is a greater tendency for students to change from
nonmaster to master, the x2 value of 2,73 indicates that it is
not statistically significantly different from error.

c. There are more consistent masters than persistent nonmaster

(x% = 26. 01)

Yo
o
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3. Conponent 7 .is the interaction term of components 1 and 4. (In fhe
response matrix [p. 26], column 7 is the product of columns 1 and 4.)
This-component indicates an association between subtests M and N;
those who are likely to change their mastery status on M.are also
Tikely to chanée their status on N, while those who do not change on
M will not change on N. The x2 value of 5.50 for this component is
significant at a = .05 Tevel. In the following table (Table 9) we
see thaf 60% of the cases concentrated in the two cells on the main”
diagonal. Further, there s a disproportionate concentration of
cases in the Tower right-hand‘ce11, which is main1y'caused by the large
percentage of students who mastered the two 5&1115 on bofh_pre7 and

post-testing.

TABLE 9

Contingency Table of Change by Subtest
(Subtest M)

Change No change
u 66 112 178
Change (.13) (.21) (.34)
Subtest N

) 93 251 344
No change (.18) (.48) (.66)

159 ' 363

X ‘ (.31) -~ (.69)

cyis
(VRY) ~




Differentiating between
Exper1menta1 and Control Groups .

When fitting a rank 2 sample matrix with a respoﬁse matrix of various
ranks, the component chi—squéres test the hypothesis of how much response
componént differentiates the;two experimental groups. Examination of the
lower half of Tab]e 6 shows that of the i5 components, 8 aré_statisfica]]y
significant. Qp the.basisbof~these tests, the fo]]owing conclusions are
drawﬁ:

1. Wifh feépect.to skill M:
a. There is a greater tendency fo} experimental stﬂdeﬁts to change
positively than for control students (.21 vs. .15, see Table 10).
“The chi-sﬁuare for this componént is 175.15.
\
TABLE 10
Contingency Table of Treatment by

Pre-test by Post-Test
(Subtest M)

Pre-test E;ﬁerimenta] Control:
Nonmaster Master Nonmaster Master
" 52 23 49 42
Nonmas ter (.18) . (.08) (.21) (.18)
Post~test : 155 ” o7
_ 60 5 . 0
Master (.21) | . (.53) | (.15) (.46)
112 178 - 83 . 149
(.39) (.61) (.36) ( 64) -

This hypothesis is of primary interest in this example. An
effective educational progiam shou]d be one that can make a

meaningful change in students. The traditional method of
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post-test scores, or a significant difference between the experi-
mental and the control group, does notfprovide sufficient 1nf6r?
métion for making such an educational decision as whether a cur-
riculum tﬂat can 1nc}ease the feading score by 1 point on the
+ test shou{d be adopted when such an increase has been shown to
" be sigﬁificaht. '

br; to provide another examp]e,‘let us assume-that éwo-pro-
'g}ams (Aland B) teach sk511 T. On the average, students 1:11'~
program A answer 30% of the items correctly on the fest measuring
mastery of skill T, while for those in program B the avérdgehis
15%. The scoring criterion is su;h‘thqt to be con$1déred a master
of the s£111, one must mark‘at least 70% of éhe items correctly.
Even if studenfs in program A score significantly Highér than
étudents in program B, neither teaches many students to ma§ter
skill T and, £herefore, we may not wish to édopt efther program.
The component chi-square value of 17.92 indicates that the
pfobabi]ity for sfudents to remain in the same status is greater
for the experimental group than for the control group. To inves-
tigate the source of this effect, let us examine Table 10. At
pre—testipg, the two’groups afe comparable fn that 61% of the
experimen;al and 64% of the control students are cjassified as
masters. However, 53%vof the éxperimenta] students are’thasters on,
‘both occasions, while only 46% of the control students are masters

on-both occasions. The error due to measurement (defined before

as master on pre-testing but nonmaster on post-testing) is greater
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for the control group (.18) than for the experimental group (.08),
suggesting a greater tendency for control students to guess on
post-testing.

The difference in percentage between consistent masters and per-

"sistent nonmasters is greater in the experimental group than in

With

the contro] group. The chi-square value for this component is
75.70. Examination of'TaE]e 10 shows that in the experimental
group of 112 nonmasters, 60 became masters (54%) on post-testing;
in the control gron, 41% of the nonmasters on pre-testing be-
came masters on post-testing. As discussed in (b) above, of those

who were classified as masters on pre-testing as a result of guess-

ing, there is a greater percentage of the experimental group who

.became masters after instruction.

respect to skill N:

The probability for students to remain in the same status 1is
grgater for the experimental students than for the control
group {x% = 54.00). This probability is primarily a result
of the disproportionate concentration of students in the con-

sistent masters cell for the experimental group (.46). Notably,

- of those who are classified as masters at pre-testing, 78% of

the experimental students are c]assified as masters dpon post-
‘testing. In the control group, only 67% of the masters on pre-

testing are classified as iasters: on post-testing (Table 11).-

.
8 , . Q
B
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TABLE 11

Conting ncg Table of Treatment by
re-test by Post-test

, (Subtest N)

Experimental

\
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Pre-test . Control
Nonmaster- © Master Nonmaster Master

- 62 37 63 41

. Nonmaster .21) - | (.13) (.27) (.18)
Post-test 59 132 41 ; 87
Master (.20) (.45) (.18) | (.37)

121 169 104 128

(.41) (.59) (.45) (.5s)

. b. Of those who change their mastery status, the exper1menta1 group
shows greater probability for 1earn1ng, while for the contro]
'group the probability of, change due to learning is equa] to
measurementrerror The xz (5.09) statistic for th1s hypothesis
fallsa little below « = .05 (.057).

’ c. As on sUbtest M; the difference in percentage between conSistent
masters and persistent nonmasters dn subtest N is also .greater

in the experimental, group than in the control group (x2 = 9.69).

3. Interaction terms: . ; | |

a. Component 7 of'the response matrin is the interaction term of
cdmponents 1 ane’4. The”significant x2 (7.13) indicates that the

, assoeiét1on between subtest M and subtest N is different between

-the twe student groups. In the experimental group, 64% of the ,

students are found in cells a and d (Table 12); and only 57% of |

students in the control group appear 1n these ce]]s It is more

C2
Y=
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Tikely for the experimental students who change mastery status

on M also to change on N, and for those who are unchanged on' M

to remain unchanged on N. ‘While control students may :learn
about M or N oh their own, they may lgarnmabout one but not the
other and, therefore, their mastery stétu;:may change on one
'skill but not the -other: - Experiméntﬁ] students who are exposed
to the instruction of M are also exposed to-the instruction of N,

which therefore results in the higher association.

TABLE 12

Contingency Tab]é of Change by
X Suptests by Treatment

Subtest M Exbérimenta] Control :
- Change - No change Change No change
. a 37 ¢ 59 |a 29 |c¢ 59 ’
- Change (.13) (.20) (.13) (.23)
Subtest N- " - - 703
' b d 148 |b 47 d

No change (.16) (.51) (.20) - (.44)

83 207 76 162
(.29) (.71) (.33) (.67)

* k k -k do

| While the models presented above proéided the obportunity to test a
numberxof hypctheses, ﬁone is found to fit the data well. An afteknative '
~-approach to the analysis of the Ecology Program data would be to treat

the }esponse c1assif1ca}jén as four main categories: skill M pre-test,\

skill M post-fest, skill'N pre-test, and skill N post-test. ' There are “two -

] -~
ey ?
X o
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matrix of 27 factoriail design without the vector corresponding to the

arand mean:

| A R (R R N S R R R A I O 1
| A A EY B R A A R et S I B B B 2
T 1-1 1 1-1T 1-1 1-1-1 1=1-123 3
T 17-1-117-1-1-1-11-1-1 1 11 4
T-1 1T 11 1 1-1-1 1-1-1 -1 =1 5
T-T 1 -1T-1T V-1=-11=-1-1 1-1 ]
t-1-1 1-1-1 1T 1-1T-%Y 1-1-1 11 7
1-1-1-1T-1-1-1 1 1 1 1 1 1-1-1 8
X =

=117 1T 1T -1-1-1 1 1 -1 -1 -1 1 -1 9
-1 17 -1-1-1T 71 -1 -1 1] - 10
SIS I BN B B B R I I A B S 11
Sl T B I T A B b1 - -1 12
-1 10 1 -t -1 -T -7 111 -1 - 13
1= 1-~1 1-1 1-1 1-1T 1-1 T ~1 14
-1-1-1 17 1 1-1 1-1-1-1 1 1-=1 15
S1-1-17-1 11111 1-1-1-1-11 16

o]

Do uvoo®a80 0 8

< 0 O O = < < 0 00 O < < < @ <

tach of the first four columns tests the probability of falling into
the mastery versus nonmastery class on each of the four main categories.
Columns 5 through 10 test the two-way interéction of the four main cate-
gories. The Tast six columns are the three-way and ‘osur-way interactions.

Table 13 oresents the goodness-of-fit for models of various ranks.




S e e
adddnesy-afapa T Foy

vy
Ty

R,
MOS8 R

oFf Various Ranks
Ranks Likelihood
Sample  Response chi-square df Probabilities
1 10 44 .48 20 0.0013
2 4 179.56 22 0.0000
2 10 6.09 10 0.8075

The rank 2 rank 10 model has .a very good fit. Using this model, the
estimated 8's and the standard errors feor 8's are presented in Table 14.
Again, the first column of the sample matrix indicates the general

tendency of the tw .. oups combined, while the second column compares the

two groups. The findings are listed below.
TABLE 14
Estimated Effects and Standard Errors
for Rank 2, Rank 10 Model
(Ecology Program)
Response Physical effects
effect (B) Expg?1menta1 + Control  Experimental - Control

A -0.255 § .105)* 0.452 (.211)

B -0.593 (.106)* -0.648 (.212)*

C -0.081 (.103§ 0.078 §.201)

D -0.174 (.105 -0,216 (.210)
AB 1.426 (.216)* 0.270 (.432)
AC 0.439 (.206) 1.013 (.412)
AD ¥ 0.471 (.214) -0.527 (.428)
BC 0.332 (.219) -0.333 (.438)
BD 0.752 (.219) 1.570 (.437)*
CD 1.146 (.199) -0.054 (.399)

*2.5 times greater than its standard error

as suggested by
Goodman (1973).




aeneral Tendency

1. 3a &N indicate that th#ra is a greater percentage of masters than
nonmasters with respect to M on'both pre- and post-testing.
2. Students' mastery status tends to remain the same rather than to

change on both M (8,5 = 1.426) and N (8cp = 0-752) and those who

are nonmasters on one skill tend to be nonmasters on the other
skill.

Comparing the Two Experimental Groups

1. Upon post-testing, there are more masters in the experimental group
than in the control group on subtest M (eB = -0.648). As shown in
Table 15, 74% of the experimental students have mastered M on post-
testing, while only 61% of the control students have méstered M for

post-testing (Table 15).

TABLE 15

Frequency Distribution and Percentage
of Masters and Nonmasters on Fqur Testings

Experimental Control Total
Non- Non- Non-
Master mastéer | Master mgster Master master

Subtest M. i78 112 148 33 327 195
Pre-testing (.61) (.39) (.64) (.36) (.62) (.38)
Subtest M 215 75 141 91 356 166
Post-testing | (.74) (.26) (.61) (.39) (.68) (.32)
Subtest N 169 121 128 104 297 225
Pre-testing (.58) (.42) (.55) (.45) (.57) (.43)
Subtest N 191 g9 | 128 104 319 203
Post-testing | (.66) (.34) (.56) (.44) (.61) (.49)

- N
P vy
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dpan pre-testing, the experimental students’ mastery on M and N is

related. his association, however, does not occur in the control
group. Sinca the students are randomly selected and then randomly
assigned to the two instructional groups, it is not possibie to

determine the cause of this difference on the pre-testing (Table 16).

TABLE 16

Contingency Table of Pre-tasting Results
on Subtests M and N by Treatment Groups

Subtest M Experimental Contro]
Nonmaster Master Nonmaster Master
66 55 . 41 63
Nonmaster (.23) (.19) (.18) (.27) -
Subtest N
46 123 4?2 86
Master (.16) (.42) (.18) (.37)
112 178 83 149
(.39) (.61) (.36) (.64)

3. XZBD indicate that there is a stronger positive relation between the
magtery status on M and N for the experimental group thén for the
control group. In the experimental group, it is more lfke}y for those
who have mastered M also to master N, and for those who have not
mastered M not to master N. This finding may be a result of the fact

that the experimental students are exposed to ihstruction on both

M and N, whereas the control students may be exposed to one

but not the other. In other words, the experimental students' learning

experience on the two skills is planned, whereas the control students’

exposure to these two skills is not (Table 17).

.

- A
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TABLE 17

Contingency Table of Mastery Status on
M and N by Treatment Groups

Subtest M B Exgerimentd1 ) vl
Nonmas ter, Master Nonrua, - Master

48 51 45 59

Nonmas ter (.17) (.18) (.19) (.25)

Subtest N

7 164 46 82

Mas ter (.39) (.57) (.20) (.35)

‘75 215 ’ 91 141

(.26) (.75) (,39) (.60)

E

Table 18 g%ves the observed and estimated frequencies using the rank 2

rank 10 model. It can also be used to check the fit of the model.

TABLE 18

Observed and Estimated Response
of Students in Experimental and Control Groups

M. M. N. N Observed Frequencies Estimated Frequencies
17271 72 txperimental Control txperimental Control

0,0 0 O 28 19 26 19

0.0 0 1 9 . 8 8 8

0 01 O 8 10 9 9

0 0 11 7 12 9 13-

01 00 10 g 13 10

0 1 0 1 19 5 ' 19 4

01 10 7 9 5 9

o1 1 1 24 11 23 ‘ 11

1 0 C O 4 11 7 11

1T 0 0 1 3 10 3 10

1 01 0 8 5 6 5

1 0 1 1 8 16 7 15

1 001 0 20 24 16 23

1T 0 1 1 28 18 29 19

1T 110 14 17 17 18

T 1 11 83 48 - 93 48

Total 290 232 ax 290 232
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DISCUSSION

This study presents a proficiency assessment mode! that provides
information on individuals; mastery status on specific skills. The
assessment model describes the construction and scoring of mastery tests
as well as the organization and reporting of individual and group testing-
results. ‘ |

When the model is used, each individual's mastery status (mastery
or nonmastery) with respect to several skills can be represented by a
vector with n elements, where n equals the number of skills tested. This
type of multivariate quantitative data is analyzed by the 1og-Tinear
model which incorporates both a sampling factor (e.g., experimental group
versus con€r01 group) and a respense structure, bThe model, therefore,
provides test stafistics to assess the differences in capability of the
sampled groups 55 well as the structure represeﬁted by the response factors.

The two examples presented illustrate the applicability of the log-
linear model in the analysis of_proficiency assessment results. - In the
first example, the contingency table from Solomon's (1961) study was
adapted for use in a hypothetical setting with the intention‘of illus-
trating how to evaluate the differentiating capability of master measures.

A good instrument, theoretically, should be one that can accurately
differentiate between "experts" ‘ahd "nonexpgrté" and between students
who have had instruction and students who have had no instruction. To
evaluate the "goodness" of the Reading Comprehension Test emp1r1ca11y,
the hypothetical examp]e presumes that the test was given to a random

sample of program students and to a random sample of'nonprogram students.
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The results of the statistical analysis indicates that the instrument as
a whole differentiates between the experimental and control groups. The
two subtests measuring cbjectives ¢ and d differentiate between the two
groups the most while the subtest for objective a does not differentiate
between the two groups. Measures with medium response probability, over-
all, are better discriminators than measures with extreme response prob-
ability. However, with mastery measures, the groups of experts could all
have a score of l,jand the group of nonexperts could all have a score
of 0. -When the number of cases in the two groups is equal, therefore,
such as in the given example, the overall rasponse probability would be
.50. In this context, the above-mentioned conclusion agrees with the
_c]assica] theory of measurement.

The log-linear model, however, is capable of. detecting differences
in the mastery status of instructed and uninstructed groups when there is
a disproportion of students in the groups which would lead to overall re-
sponss propensities outside the middle range. Thus, if there are four
times as many experts as nonexperts. and all the experts demonstrate
mastery while the nonexpeéts are nonmésters, then the overall response
probabi1ity will be .80: but the log-linear model will still detect the
group difféhgpce. '

The second example deals with the use of mastery measures in an actual
educational program evaluation. Here, the 10th grade kesu1ts of the Los
Angeles Unified School District's:ESEA Title III Ecology Program were
analyzed, using the proposed model. Two different approaches were employed

in formulating the response matrix.

t~
A
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The results of the analysis indicated that students using the program
material were more likely to improve than students not using the material,
on the two skills taught in the program. Among the group of students with
instruction, those who mastered one skill were more likely to master the
other skill; this relationship did not exist among the group of students
without instruction. Thi$ result could be interpreted to mean that the stu-
dents in the noninstructed group could be exposed to one skill but not the
other, whereas students in-the instructional group were expoéed to both skills.
Therefore, in the non{;structed group, students' mastery status on either
skill waé related to the degree of advantageous exposure they received; while J
in the instruction group, expo;ure to both units seemed to have a reinforcing
effect,

The results also indicated that studénts' mastery status in both groups
was more likely to reTain the same than to change. This findin; indicated
that the program was not efficient, primarily as a result of the great per-
centage of students who were masters on both skills at pre-testing (.62 and
.57). As suggesfed by Novick and Lewis (1974), a carefully monitored program
will, typically, be such as to suggest a prior probability distribution that
assisgns a probability of just more than .50 to the region above the ériterion
level. By this rule, the post-testing goal was achieved upon pre-testing in
the given example. According to Novfck and Lewis, then, the'program may be
wasteful and should have been revised for implementation at a lower grade
level as soon as the pfe-testing results were reported.

The log-1inear model presented in this study permits a cbncise analysis
of data arising from the use of mastery measurements. Further explorations
‘of the use of 'this model shoﬁ]d concentrate on manipulations of the.mastery
level criteria in 1ight of the effigiéhcy notion proposed by Novick and Léwis,

as applied in educational evaluations.
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